Acta Crystallographica Section E

Structure Reports

Online

3,4,4-Trichloro-1-[4-(2-fluorophenyl)piperazinyl]-1-(n-hexadecylsulfanyl)-2-nitrobuta-1,3-diene

ISSN 1600-5368

Cemil Ibis,* M. Cigdem Sayil and F. Ozkok

Istanbul University, Faculty of Engineering,
Department of Chemistry, 34320
Avcilar-Istanbul, Turkey

Correspondence e-mail: ibiscml@istanbul.edu.tr

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.057$
$w R$ factor $=0.069$
Data-to-parameter ratio $=22.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{Cl}_{3} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}$, the piperazine ring is in a chair conformation. The alkyl substituent has a fully extended conformation.

Comment

Piperazine compounds are important in clinical chemistry (Soladin \& Heat, 1996) and in transfer reactions (Zhao \& Miller, 1996). It is known that N, S-disubstituted diene compounds can be prepared from the reactions of some mono(thio)-substituted compounds with amines (primary amine, piperazine, morpholine, piperidine etc.) (Ibis et al., 2001). The title compound, (I), was synthesized from 1,3,4,4-tetrachloro-1-(hexadecylsulfanyl)-2-nitrobuta-1,3-diene and 1-(2-fluorophenyl)piperazine (Ibis, Sayil \& Ozkok, 2006).

The structure of (I) (Fig. 1) contains the expected N, S disubstituted butadienyl skeleton. The butadiene unit has assumed a configuration close to cisoid, but is not completely planar as it would be if the two double bonds were fully conjugated. In the structure of (I), the $U_{\text {eq }}$ values of the C atoms of the hexadecyl chain generally increase on going from C15 to C30, reflecting libration of the chain. For the chain C15-C30, the average C-C bond length is 1.514 (4) \AA and the average $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle is $114.2(2)^{\circ}$. All the torsion angles within the hexadecyl chain deviate from 180° by less than 1.0°. Thus, the C_{16} chain has a near trans-coplanar conformation. The observed values are consistent with the corresponding values in a similar compound (Jaeger et al., 1998). The piperazine ring is in a chair conformation. The $\mathrm{C}-\mathrm{C}$ bond lengths of the butadiene unit are $1.406,1.452$ and $1.334 \AA$, respectively, for C3-C4, C3-C2 and C2-C1 (Surange et al., 1997; Ibis, Sayil \& Deniz, 2006).

Experimental

1,3,4,4-Tetrachloro-1-(hexadecylsulfanyl)-2-nitrobuta-1,3-diene $(0.309 \mathrm{~g}, \quad 0.6 \mathrm{mmol})$ and 1-(2-fluorophenyl)piperazine $(0.112 \mathrm{~g}$, 0.6 mmol) were mixed in dichloromethane $(25 \mathrm{ml})$ at room temperature. The mixture was stirred for $2-3 \mathrm{~h}$. Chloroform was added to the reaction mixture. The organic layer was separated and washed with water $(4 \times 30 \mathrm{ml})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solvent had evaporated, the residue was purified by column chromatography on silica gel. Orange crystals of (I) suitable for X-ray

Received 31 January 2006
Accepted 16 February 2006

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
diffraction analysis were obtained by slow evaporation of an ethanol at room temperature (yield: $0.14 \mathrm{~g}, 38 \%$; m.p.362-363 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{30} \mathrm{H}_{45} \mathrm{Cl}_{3} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=637.12 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.0852(4) \AA \\
& b=8.3609(2) \AA \\
& c=30.031(2) \AA \\
& \alpha=83.958(7)^{\circ} \\
& \beta=89.631(9)^{\circ} \\
& \gamma=71.030(7)^{\circ} \\
& V=1672.30(17) \AA^{\circ}
\end{aligned}
$$

$$
Z=2
$$

$$
D_{x}=1.265 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 12683
reflections
$\theta=2.7-30.0^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=293.5 \mathrm{~K}$
Block, orange
$0.40 \times 0.40 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku R-AXIS diffractometer ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.867, T_{\text {max }}=0.930$
91368 measured reflections 9942 independent reflections

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.069$
$S=1.05$
8220 reflections
361 parameters
All H-atom parameters constrained
Chebychev polynomial with 3 para-
meters (Carruthers \& Watkin,
1979): 8.9436, 3.9410 and 6.7084
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.85 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.55 \mathrm{e}^{-3}$

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.95$ (6) \AA and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CRYSTALCLEAR (Rigaku/MSC, 2002); cell refinement: CRYSTALCLEAR; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

This work was supported by the Research Fund of the University of Istanbul.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ibis, C. \& Sayil, C. (2001). Rev. Roum. Chim. 46, 211-216.
Ibis, C., Sayil, M. C. \& Deniz, N. G.(2006). Acta Cryst. E62, o800-o801.
Ibis, C., Sayil, M. C. \& Ozkok, F. (2006). In preparation.
Jaeger, D. A., Goodson, P. A., Arulsamy, N. \& Wettstein, J. (1998). Chem. Phys. Lipids, 92, 99-104.
Rigaku/MSC (2002). CRYSTALCLEAR. Version 1.3.5. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku/MSC (2003). CrystalStructure. Version 3.5.1. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Soladin, I. \& Heat, T. D. (1996). Synlett. 7, 619.
Surange, S. S., Kumaran, G., Rajappa, S., Rajalakshmi, K. \& Pattabhi, V. (1997). Tetrahedron, 53, 8531-8540.

Zhao, S. \& Miller, A. K. (1996). Tetrahedron Lett. 37, 4463.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

